Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Expert Rev Cardiovasc Ther ; 21(6): 453-461, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2323433

ABSTRACT

OBJECTIVES: The type of arrhythmias, and their prevalence in mild/moderate and severe COVID-19 patients admitted to the hospital are unknown from a prospective cohort study. METHODS: We did continuous electrocardiograms along with multiple ECGs in 305 consecutive hospitalized COVID-19 patients. RESULTS: The incidence of arrhythmias was 6.8% (21/305) in the target population. The incidence of arrhythmias was 9.2% (17/185) in patients with severe COVID-19 illness and 3.3% (4/120) in patients with mild/moderate COVID-19 illness with no significant difference (p = 0.063). All the arrhythmias were new-onset arrhythmias in this study. 95% (20/21) of these arrhythmias were atrial arrhythmia with 71.42% (15/21) being atrial fibrillation and one episode of sustained polymorphic ventricular tachycardia. No episode of high-grade atrioventricular block, sustained monomorphic ventricular arrhythmia, or torsades de pointes arrhythmias were observed in this study. The patients with arrhythmias were admitted to the intensive care unit (80.9% vs. 50.7%; p: 0.007), were on a ventilator (47.6% vs. 21.4%; p: 0.006), and had high in-hospital mortality (57.1% vs. 21.1%; p: 0.0001) than patients without arrhythmias. CONCLUSION: Atrial arrhythmias were the most frequent arrhythmias in hospital-admitted COVID-19 patients with atrial fibrillation being the most common arrhythmia. TRIAL REGISTRATION: Clinical Trial Registry India (CTRI) (CTRI/2021/01/030788). (https://www.ctri.nic.in/).


Subject(s)
Atrial Fibrillation , COVID-19 , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/epidemiology , COVID-19/complications , COVID-19/epidemiology , Prospective Studies , Prevalence , Hospitalization
3.
Commun Med (Lond) ; 3(1): 37, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2284009

ABSTRACT

BACKGROUND: Saliva is easily obtainable non-invasively and potentially suitable for detecting both current and previous SARS-CoV-2 infection, but there is limited evidence on the utility of salivary antibody testing for community surveillance. METHODS: We established 6 ELISAs detecting IgA and IgG antibodies to whole SARS-CoV-2 spike protein, to its receptor binding domain region and to nucleocapsid protein in saliva. We evaluated diagnostic performance, and using paired saliva and serum samples, correlated mucosal and systemic antibody responses. The best-performing assays were field-tested in 20 household outbreaks. RESULTS: We demonstrate in test accuracy (N = 320), spike IgG (ROC AUC: 95.0%, 92.8-97.3%) and spike IgA (ROC AUC: 89.9%, 86.5-93.2%) assays to discriminate best between pre-pandemic and post COVID-19 saliva samples. Specificity was 100% in younger age groups (0-19 years) for spike IgA and IgG. However, sensitivity was low for the best-performing assay (spike IgG: 50.6%, 39.8-61.4%). Using machine learning, diagnostic performance was improved when a combination of tests was used. As expected, salivary IgA was poorly correlated with serum, indicating an oral mucosal response whereas salivary IgG responses were predictive of those in serum. When deployed to household outbreaks, antibody responses were heterogeneous but remained a reliable indicator of recent infection. Intriguingly, unvaccinated children without confirmed infection showed evidence of exposure almost exclusively through specific IgA responses. CONCLUSIONS: Through robust standardisation, evaluation and field-testing, this work provides a platform for further studies investigating SARS-CoV-2 transmission and mucosal immunity with the potential for expanding salivo-surveillance to other respiratory infections in hard-to-reach settings.


If a person has been previously infected with SARS-CoV-2 they will produce specific proteins, called antibodies. These are present in the saliva and blood. Saliva is easier to obtain than blood, so we developed and evaluated six tests that detect SARS-CoV-2 antibodies in saliva in children and adults. Some tests detected antibodies to a particular protein made by SARS-CoV-2 called the spike protein, and these tests worked best. The most accurate results were obtained by using a combination of tests. Similar tests could also be developed to detect other respiratory infections which will enable easier identification of infected individuals.

4.
Front Immunol ; 13: 968317, 2022.
Article in English | MEDLINE | ID: covidwho-2261949

ABSTRACT

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Viral Envelope Proteins , Seroepidemiologic Studies , COVID-19/diagnosis , Membrane Glycoproteins
5.
Biomed Signal Process Control ; 80: 104268, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2241193

ABSTRACT

COVID-19 is the most transmissible disease, caused by the SARS-CoV-2 virus that severely infects the lungs and the upper respiratory tract of the human body. This virus badly affected the lives and wellness of millions of people worldwide and spread widely. Early diagnosis, timely treatment, and proper confinement of the infected patients are some possible ways to control the spreading of coronavirus. Computed tomography (CT) scanning has proven useful in diagnosing several respiratory lung problems, including COVID-19 infections. Automated detection of COVID-19 using chest CT-scan images may reduce the clinician's load and save the lives of thousands of people. This study proposes a robust framework for the automated screening of COVID-19 using chest CT-scan images and deep learning-based techniques. In this work, a publically accessible CT-scan image dataset (contains the 1252 COVID-19 and 1230 non-COVID chest CT images), two pre-trained deep learning models (DLMs) namely, MobileNetV2 and DarkNet19, and a newly-designed lightweight DLM, are utilized for the automated screening of COVID-19. A repeated ten-fold holdout validation method is utilized for the training, validation, and testing of DLMs. The highest classification accuracy of 98.91% is achieved using transfer-learned DarkNet19. The proposed framework is ready to be tested with more CT images. The simulation results with the publicly available COVID-19 CT scan image dataset are included to show the effectiveness of the presented study.

6.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 111-121, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2208307

ABSTRACT

The COVID-19 pandemic and concomitant lockdowns presented a global health challenge and triggered unprecedented research efforts to elucidate the molecular mechanisms and pathogenicity of SARS-CoV-2. The spike glycoprotein decorating the surface of SARS-CoV-2 virions is a prime target for vaccine development, antibody therapy and serology as it binds the host cell receptor and is central for viral cell entry. The electron cryo-microscopy structure of the spike protein revealed a hydrophobic pocket in the receptor-binding domain that is occupied by an essential fatty acid, linoleic acid (LA). The LA-bound spike protein adopts a non-infectious locked conformation which is more stable than the infectious form and shields important immunogenic epitopes. Here, the impact of LA binding on viral infectivity and replication, and the evolutionary conservation of the pocket in other highly pathogenic coronaviruses, including SARS-CoV-2 variants of concern (VOCs), are reviewed. The importance of LA metabolic products, the eicosanoids, in regulating the human immune response and inflammation is highlighted. Lipid and fatty-acid binding to a hydrophobic pocket in proteins on the virion surface appears to be a broader strategy employed by viruses, including picornaviruses and Zika virus. Ligand binding stabilizes their protein structure and assembly, and downregulates infectivity. In the case of rhinoviruses, this has been exploited to develop small-molecule antiviral drugs that bind to the hydrophobic pocket. The results suggest a COVID-19 antiviral treatment based on the LA-binding pocket.


Subject(s)
Antiviral Agents , COVID-19 , Cryoelectron Microscopy , Linoleic Acid , SARS-CoV-2 , Humans , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Communicable Disease Control , COVID-19/therapy , COVID-19/virology , Linoleic Acid/metabolism , Linoleic Acid/pharmacology , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure
7.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2125092

ABSTRACT

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.

8.
Sci Adv ; 8(47): eadc9179, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2137353

ABSTRACT

As coronavirus disease 2019 (COVID-19) persists, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA binding stabilizes a locked S conformation, interfering with virus infectivity. We provide evidence that the pocket is conserved in pathogenic ß-coronaviruses (ß-CoVs) infecting humans. SARS-CoV, MERS-CoV, SARS-CoV-2, and VOCs bind the essential FFA linoleic acid (LA), while binding is abolished by one mutation in common cold-causing HCoV-HKU1. In the SARS-CoV S structure, LA stabilizes the locked conformation, while the open, infectious conformation is devoid of LA. Electron tomography of SARS-CoV-2-infected cells reveals that LA treatment inhibits viral replication, resulting in fewer deformed virions. Our results establish FFA binding as a hallmark of pathogenic ß-CoV infection and replication, setting the stage for FFA-based antiviral strategies to overcome COVID-19.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Fatty Acids, Nonesterified , SARS-CoV-2
9.
Mol Biomed ; 3(1): 36, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2139810

ABSTRACT

People with acute COVID-19 due to SARS-CoV-2 infection experience a range of symptoms, but major factors contributing to severe clinical outcomes remain to be understood. Emerging evidence suggests associations between the gut microbiome and the severity and progression of COVID-19. To better understand the host-microbiota interactions in acute COVID-19, we characterized the intestinal microbiome of patients with active SARS-CoV-2 infection in comparison to recovered patients and uninfected healthy controls. We performed 16S rRNA sequencing of stool samples collected between May 2020 and January 2021 from 20 COVID-19-positive patients, 20 COVID-19-recovered subjects and 20 healthy controls. COVID-19-positive patients had altered microbiome community characteristics compared to the recovered and control subjects, as assessed by both α- and ß-diversity differences. In COVID-19-positive patients, we observed depletion of Bacteroidaceae, Ruminococcaceae, and Lachnospiraceae, as well as decreased relative abundances of the genera Faecalibacterium, Adlercreutzia, and the Eubacterium brachy group. The enrichment of Prevotellaceae with COVID-19 infection continued after viral clearance; antibiotic use induced further gut microbiota perturbations in COVID-19-positive patients. In conclusion, we present evidence that acute COVID-19 induces gut microbiota dysbiosis with depletion of particular populations of commensal bacteria, a phenomenon heightened by antibiotic exposure, but the general effects do not persist post-recovery.

10.
Copernican Journal of Finance and Accounting ; 10(4):79-96, 2021.
Article in English | ProQuest Central | ID: covidwho-2090906

ABSTRACT

The current study aims to examine the impact of structural breaks on price discovery efficiency of Indian equity futures market. Global financial crisis, change of Government, demonetization and COVID-19 are identified as significant events. Data is divided into sub-samples of pre and post event period to study the impact of these events on price discovery efficiency of the Indian equity futures market. Unit root test is used to check stationarity of data. Granger causality test, Johansen’s cointegration test and Vector error correction methodology (VECM) are used for analysis. During full sample period, it is observed that there is a significant bi-directional causality between cash and futures markets and cash market leads futures market in price discovery. In addition, global financial crisis triggered volatility in Indian equity futures market, which reduced its price discovery efficiency, whereas, after change in Government, bidirectional transmission of information restored between cash market and futures market. Furthermore, futures market played a leading role in absorbing volatility triggered by demonetization. COVID-19 did not significantly affect price discovery efficiency of Indian equity futures market.

11.
Science ; 377(6604): eabm3125, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1901907

ABSTRACT

Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis.


Subject(s)
COVID-19 , Host-Pathogen Interactions , SARS-CoV-2 , Sialic Acids , Spike Glycoprotein, Coronavirus , COVID-19/transmission , Cryoelectron Microscopy , Genetic Variation , Humans , Nuclear Magnetic Resonance, Biomolecular , Polysaccharides/chemistry , Protein Binding , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Sialic Acids/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
12.
Nat Commun ; 13(1): 868, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1684025

ABSTRACT

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.


Subject(s)
COVID-19/immunology , Fatty Acids/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology , A549 Cells , Allosteric Site/genetics , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Fatty Acid-Binding Proteins/immunology , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Humans , MCF-7 Cells , Microscopy, Confocal/methods , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism , Virion/ultrastructure
13.
Nat Commun ; 13(1): 222, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1621242

ABSTRACT

As the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants with increased transmissibility and pathology. In addition to this entrenched diversity, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriSΔ variant, originally identified as a viral subpopulation from SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike an eight amino-acid deletion encompassing a furin recognition motif and S1/S2 cleavage site. We elucidate the structure, function and molecular dynamics of this spike providing mechanistic insight into how the deletion correlates to viral cell tropism, ACE2 receptor binding and infectivity of this SARS-CoV-2 variant. Our results reveal long-range allosteric communication between functional domains that differ in the wild-type and the deletion variant and support a view of SARS-CoV-2 probing multiple evolutionary trajectories in distinct cell types within the same infected host.


Subject(s)
SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Animals , COVID-19/virology , Cell Line , Cryoelectron Microscopy , Evolution, Molecular , Furin/metabolism , Humans , Linoleic Acid/metabolism , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Tropism , Virus Internalization
14.
World J Gastroenterol ; 27(46): 7969-7981, 2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1580317

ABSTRACT

The coronavirus disease 2019 (COVID-19) has caused one of the worst public health crises in modern history. Even though severe acute respiratory syndrome coronavirus 2 primarily affects the respiratory tract, gastrointestinal manifestations are well described in literature. This review will discuss the epidemiology, virology, manifestations, immunosuppressant states, and lessons learned from COVID-19. Observations: At the time of writing, COVID-19 had infected more than 111 million people and caused over 2.5 million deaths worldwide. Multiple medical comorbidities including obesity, pre-existing liver condition and the use of proton pump inhibitor have been described as risk factor for severe COVID-19. COVID-19 most frequently causes diarrhea (12.4%), nausea/vomiting (9%) and elevation in liver enzymes (15%-20%). The current data does not suggest that patients on immunomodulators have a significantly increased risk of mortality from COVID-19. The current guidelines from American Gastroenterological Association and American Association for the Study of Liver Diseases do not recommend pre-emptive changes in patients on immunosuppression if the patients have not been infected with COVID-19. Conclusions and relevance: The COVID-19 pandemic has prompted a change in structure and shape of gastroenterology departmental activities. Endoscopy should be performed only when necessary and with strict protective measures. Online consultations in the form of telehealth services and home drug deliveries have revolutionized the field.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/epidemiology , Gastrointestinal Tract , Humans , Liver , Pandemics , SARS-CoV-2
15.
Clin Sci (Lond) ; 135(24): 2667-2689, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1585742

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a broad range of clinical responses including prominent microvascular damage. The capacity of SARS-CoV-2 to infect vascular cells is still debated. Additionally, the SARS-CoV-2 Spike (S) protein may act as a ligand to induce non-infective cellular stress. We tested this hypothesis in pericytes (PCs), which are reportedly reduced in the heart of patients with severe coronavirus disease-2019 (COVID-19). Here we newly show that the in vitro exposure of primary human cardiac PCs to the SARS-CoV-2 wildtype strain or the α and δ variants caused rare infection events. Exposure to the recombinant S protein alone elicited signalling and functional alterations, including: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors causing EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation, and rescued PC function in the presence of the S protein. Immunoreactive S protein was detected in the peripheral blood of infected patients. In conclusion, our findings suggest that the S protein may prompt PC dysfunction, potentially contributing to microvascular injury. This mechanism may have clinical and therapeutic implications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Basigin/metabolism , Myocardium/enzymology , Pericytes/enzymology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/blood , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , Caco-2 Cells , Cell Death , Child , Child, Preschool , Cytokines/metabolism , Female , Host-Pathogen Interactions , Humans , Infant , Infant, Newborn , Male , Middle Aged , Myocardium/cytology , Pericytes/virology , Primary Cell Culture , Young Adult
16.
Angew Chem Int Ed Engl ; 60(13): 7098-7110, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1384107

ABSTRACT

We investigate binding of linoleate and other potential ligands to the recently discovered fatty acid binding site in the SARS-CoV-2 spike protein, using docking and molecular dynamics simulations. Simulations suggest that linoleate and dexamethasone stabilize the locked spike conformation, thus reducing the opportunity for ACE2 interaction. In contrast, cholesterol may expose the receptor-binding domain by destabilizing the closed structure, preferentially binding to a different site in the hinge region of the open structure. We docked a library of FDA-approved drugs to the fatty acid site using an approach that reproduces the structure of the linoleate complex. Docking identifies steroids (including dexamethasone and vitamin D); retinoids (some known to be active in vitro, and vitamin A); and vitamin K as potential ligands that may stabilize the closed conformation. The SARS-CoV-2 spike fatty acid site may bind a diverse array of ligands, including dietary components, and therefore provides a promising target for therapeutics or prophylaxis.


Subject(s)
Molecular Dynamics Simulation , Retinoids/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Steroids/metabolism , Vitamins/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Fatty Acids/chemistry , Fatty Acids/metabolism , Humans , Ligands , Molecular Docking Simulation , Protein Structure, Quaternary , Retinoids/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Steroids/chemistry , Vitamins/chemistry
18.
Cell Rep Med ; 2(7): 100327, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1275765

ABSTRACT

Severe COVID-19 appears rare in children. This is unexpected, especially in young infants, who are vulnerable to severe disease caused by other respiratory viruses. We evaluate convalescent immune responses in 4 infants under 3 months old with confirmed COVID-19 who presented with mild febrile illness, alongside their parents, and adult controls recovered from confirmed COVID-19. Although not statistically significant, compared to seropositive adults, infants have high serum levels of IgG and IgA to SARS-CoV-2 spike protein, with a corresponding functional ability to block SARS-CoV-2 cellular entry. Infants also exhibit robust saliva anti-spike IgG and IgA responses. Spike-specific IFN-γ production by infant peripheral blood mononuclear cells appears restrained, but the frequency of spike-specific IFN-γ- and/or TNF-α-producing T cells is comparable between infants and adults. On principal-component analysis, infant immune responses appear distinct from their parents. Robust functional antibody responses alongside restrained IFN-γ production may help protect infants from severe COVID-19.


Subject(s)
Antibody Formation , COVID-19/immunology , Interferon-gamma/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adult , Female , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Infant, Newborn , Interferon-gamma/immunology , Leukocytes, Mononuclear/metabolism , Male , Young Adult
19.
Angewandte Chemie International Edition ; 60(13), 2021.
Article in English | Wiley | ID: covidwho-1135070

ABSTRACT

Drug Docking The binding of linoleate and other potential ligands to the recently discovered fatty acid binding site in the SARS-CoV-2 spike protein is investigated by James Spencer, Adrian J. Mulholland et?al. in their Research Article on page?7098.

20.
Cureus ; 12(11): e11786, 2020 Nov 30.
Article in English | MEDLINE | ID: covidwho-1011760

ABSTRACT

Coronavirus disease 2019 (COVID-19) has touched every aspect of society, and as the pandemic continues around the globe, many of the clinical factors that influence the disease course remain unclear. A useful clinical decision-making tool is a risk stratification model to determine in-hospital mortality as defined in this study. The study was performed at Robert Wood Johnson University Hospital (RWJUH) in New Brunswick, New Jersey, USA. Data was extracted from our electronic medical records on 44 variables that included demographic, clinical, laboratory tests, treatments, and mortality information. We used the least absolute shrinkage and selection operator regression with corrected Akaike's information criterion to identify a subset of variables that yielded the smallest estimated prediction error for the risk of in-hospital mortality. During the study period, 808 COVID-19 patients were admitted to RWJUH. The sample size was limited to patients with at least one confirmed in-house positive nasopharyngeal swab COVID-19 test. Pregnant patients or those who were transferred to our facility were excluded. Patients who were in observation and were discharged from the emergency room were also excluded. A total of 403 patients had complete values for all variables and were eligible for the study. We identified significant clinical, laboratory, and radiologic variables determining severe outcomes and mortality. An in-hospital mortality risk calculator was created after the identification of significant factors for the specific cohort, which were abnormal CT scan or chest X-ray, chronic kidney disease, age, white blood cell count, platelet count, alanine aminotransferase, and aspartate transaminase with a sensitivity, specificity, and negative predictive value of 82%, 72%, and 93%, respectively. While numerous reports from around the globe have helped outline the pandemic, demographic factors vary widely. This study is more applicable to an urban, highly diverse population in the United States.

SELECTION OF CITATIONS
SEARCH DETAIL